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Oscillating thermal diffusion in a sound wave in a mixture of two gases is remarkably effective for
separating the components of the mixture. We consider this separation process in boundary-layer
approximation, with zero temperature gradient and zero concentration gradient along the direction
of sound propagation. In the boundary layer, the combination of thermal diffusion with the
oscillating temperature gradient and oscillating velocity gradient leads to second-order
time-averaged fluxes of the two components of the mixture in opposite directions, parallel to the
wave-propagation direction. The oscillating thermal diffusion also adds to the dissipation of acoustic
power in the boundary layer, modifying thermal-relaxation dissipation but leaving viscous
dissipation unchanged. © 1999 Acoustical Society of America. �S0001-4966�99�03110-0�

PACS numbers: 43.35.Ud �HEB�

INTRODUCTION

In experiments on mode locking in acoustically coupled
acoustic resonators,1 we observed an anomalous difference
in the resonance frequencies of the two resonators when us-
ing a He–Xe mixture. This frequency difference, up to 3% of
the resonance frequency, was too large to be explained by
any known difference between the resonators, such as tem-
perature or geometry. We concluded that the sound wave in
the acoustic coupler was separating the helium and xenon,
thereby enriching one resonator with helium and the other
with xenon.

We realized that this mass separation could be due to the
mechanism illustrated in Fig. 1, which shows how the mix-
ture can be separated by a combination of three effects in the
boundary layers: oscillating temperature gradients in the
thermal boundary layer, thermal diffusion, and oscillating
velocity gradients in the viscous boundary layer. In a typical
mixture of helium and xenon, the Prandtl number � is about
1/4, so the viscous penetration depth �� is about half the
thermal penetration depth �� , as shown in Fig. 1. For
standing-wave phasing in a channel whose diameter is much
larger than these penetration depths, we might think of the
wave as consisting of the four steps equally spaced in time
shown in Fig. 1�a�–�d�. In the first step, while the pressure is
high, the time-dependent part of the temperature has a steep
gradient within �� of the boundary as shown at the bottom of
Fig. 1�a�, due to the adiabatic temperature rise in the gas far
from the wall and the large solid heat capacity of the wall
itself. During this time, thermal diffusion drives the heavy
component down the temperature gradient toward the bound-
ary and the light component up the temperature gradient
away from the boundary. �Signs may differ for different
gases.� Hence, at the end of this time the gas near the solid
boundary is enriched in the heavy component and depleted
of the light component, while the gas approximately �� from
the solid boundary is enriched in the light component and
depleted of the heavy component. In the second step, the gas
moves upward, with a steep gradient of velocity within �� of

the solid boundary due to viscosity, as shown at the bottom
of Fig. 1�b�. During this time, the heavy-enriched gas is rela-
tively immobilized in the viscous boundary layer, while the
light-enriched gas, just outside of the viscous boundary
layer, moves easily upward. In the third step, shown in Fig.
1�c�, low pressure reverses the sign of the temperature gra-
dient, so the thermal diffusion reverses direction, forcing the
heavy component away from the boundary and the light
component toward the boundary. Thus in the fourth step,
shown in Fig. 1�d�, light-enriched gas is relatively immobi-
lized while heavy-enriched gas moves easily downward. The
net effect of these four steps is that some of the heavy com-
ponent moves downward while some of the light component
moves upward, as shown in Fig. 1�e�.

Separation of gas mixtures using a sound wave has been
observed earlier2 and was attributed both to barodiffusion
and thermal diffusion,3 but with the latter involving the in-
teraction of the second-order, time-averaged boundary-layer
temperature gradient with the ordinary, second-order Ray-
leigh streaming.4 We suspect that this fourth-order separation
mechanism is generally weaker than our second-order pro-
cess. Acoustic separation in mixtures of three gases using the
differences between the ordinary mass diffusivities of two of
the components through the third component has also been
described5 by Howell. This mechanism works independently
of the boundary-layer temperature gradients and thermal dif-
fusion of our process. Thermoacoustic condensation and
evaporation of one component in a gas mixture have also
been studied6 by Raspet et al., with oscillating mass diffu-
sion of the condensing component.

Here, we present the first theoretical steps in support of
the process illustrated in Fig. 1. To investigate a simple case,
we restrict our analysis to the boundary-layer approximation
in a two-component gas, and we assume that time-averaged
temperature gradients and concentration gradients parallel to
the direction of wave propagation are negligible.

After a brief introduction to the relevant length scales in
the problem, we derive the oscillating temperature and oscil-
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lating concentration in a binary ideal gas mixture in
boundary-layer approximation. We find that significant con-
centration oscillations exist, but with a different phasing than
that suggested by Fig. 1. Next, we derive an expression for
the second-order separation flux. The molar separation rate is
surprisingly large for He–Xe and He–Ar mixtures, of order
10�3M 2a , where M is the acoustic Mach number and a is
the sound speed, suggesting that this process might be prac-
tical for deliberate separation of gas mixtures. The spectrum
of practical applications requiring separation of mixtures is
broad, including large-scale industrial processes such as pe-
troleum refining, air separation, and beverage processing,
and smaller-scale processes such as isotope separation and
chemical analysis. A large number of ‘‘physical’’ mixture-
separation techniques7 are well understood and in wide-
spread use, including time-independent thermal diffusion, or-
dinary diffusion, fractional distillation, centifugation,
electromagnetic separation, chromatography, and superfluid
heat flush. Much work remains in order to evaluate whether
thermoacoustic mixture separation might find a useful niche
in this vast industry. If so, we anticipate apparatus resem-
bling thermoacoustic refrigerators,8 with the large surface
area of the stack �in which pore dimensions are a few times
the thermal penetration depth� providing a large separation
rate, and with feedstock entering and products leaving the
acoustic system at standing-wave nodes.9

Next, we derive an expression for dissipation of acoustic
power, showing that thermal diffusion adds slightly to the
well-known viscous and thermal-relaxation dissipation
mechanisms. Although the contribution of thermal diffusion
to bulk attenuation of sound in gas mixtures is well known,10

we have found only one published discussion2 of this effect
for boundary-layer attenuation.

It will be important to extend this work beyond the re-
strictive assumptions we have used here, in order to evaluate
the phenomenon’s usefulness for practical mixture separa-
tion and its effect on acoustic power dissipation/production

and enthalpy flux in the stacks of thermoacoustic engines and
refrigerators8 using gas mixtures.11,12 These devices do not
operate in the boundary-layer regime, and axial time-
averaged temperature gradients always exist and concentra-
tion gradients may in fact exist. Until the present work is
suitably extended, thermoacoustics calculations �using codes
such as DeltaE13 versions 1 through 4� for gas mixtures can-
not be trusted.

I. IMPORTANT LENGTH SCALES

We will consider oscillations in a channel, in which all
variables oscillate sinusoidally with time at frequency f. The
wavelength 	�a/ f , where a is the sound speed, is an im-
portant length scale, especially in the direction x of the gas
displacement oscillations, and is much larger than all other
length scales in the problem. The amplitude of the gas dis-
placement oscillations in the x direction is a second impor-
tant length scale, which typically is much smaller than both
the wavelength and the length of the channel.

In the direction y perpendicular to the gas displacement
oscillations, one key length scale is the thermal penetration
depth

����2k/
�cp��2�/
 , �1�

where k is the thermal conductivity of the gas, � is its den-
sity, cp is its isobaric heat capacity per unit mass, � is its
thermal diffusivity, and 
�2� f is the angular frequency.
The thermal penetration depth is approximately the distance
that heat diffuses through the gas in a time 1/� f . Gas much
farther than this from the nearest solid surface experiences
adiabatic oscillations, and will not participate in thermoa-
coustic effects. Closely related to the thermal penetration
depth is the viscous penetration depth

����2
/
���2�/
 , �2�

where 
 is viscosity and � is kinematic viscosity. Within ��

of solid surfaces, viscous shear forces cause gradients in the
oscillating velocity and displacement. In gas mixtures, a
third key length scale is the mass-diffusion penetration depth

�D��2D/
 , �3�

where D is the binary mass diffusion coefficient �called D12

in some literature�.
The Prandtl number

��
cp /k���� /���2 �4�

is a dimensionless measure of the ratio of viscous to thermal
effects, which is near 2/3 for pure monatomic ideal gases and
significantly smaller for some gas mixtures. A second dimen-
sionless number,

L�k/�cpD���� /�D�2, �5�

is a measure of the ratio of thermal to mass-diffusion effects,
and is also of order one. Simple ideal-gas kinetic theory pre-
dicts � and L independent of pressure and temperature,
which is close to experimental observation.14

FIG. 1. Schematic of a possible separation process near a solid boundary in
a standing wave, in a gas mixture with Prandtl number ��1/4. The solid
arrows show motion of the heavy component, and the light arrows show
motion of the light component. The lengths of the arrows represent velocity,
and the widths of the arrows represent the local concentration of the com-
ponents. As described in the text, �a� through �d� show processes occurring
at time intervals separated by 1/4 of the period of the sound wave. The net
result, shown in �e�, is flux of the light component upward and flux of the
heavy component downward.
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Since �� , �� , and �D are all of comparable size in
gases, we can expect that viscous effects and mass-diffusion
effects may be important whenever thermoacoustic effects
are important.

II. THE OSCILLATING VARIABLES

We consider sound propagating in the x direction in a
uniformly mixed two-component ideal gas within a channel
with constant cross sectional area A and hydraulic15 radius rh

much larger than the viscous, thermal, and diffusion penetra-
tion depths but much smaller than the acoustic wavelength.
We adopt the common8 complex notation for time-oscillating
quantities �pressure p, temperature T, vector velocity v with
component u parallel to x and component v perpendicular to
x, density � , mass fraction c, entropy per unit mass s):

p�pm�Re�p1�x �ei
t��••• , �6�

u�Re�u1�x ,y �ei
t��••• , �7�

T�Tm�Re�T1�x ,y �ei
t��••• , �8�

� ,c ,s , etc.�similar to T , �9�

v, v�similar to u . �10�

In this monofrequency, steady-state acoustic approximation,
all the time dependence appears in the factor ei
t. The mean
values �subscript m) are real, but the small amplitudes �sub-
script 1) are in general complex to account for the time
phasing of the oscillating quantities. The coordinate y mea-
sures the distance from the wall.

To establish notation and method, we begin by deriving
the well-known y dependence of the gas velocity,16 using the
x-component of the momentum equation, for which our
acoustic approximation is

i
�mu1��
dp1

dx
�


 �2u1

�y2 . �11�

The momentum equation for a gas mixture is identical to that
of a pure gas. The x derivatives of u1 have been neglected
because they are of order u1 /	 , and hence are much smaller
than the y derivatives, of order u1 /�� . Equation �11� is an
ordinary differential equation for u1(y). With boundary con-
dition u1(0)�0 at the solid surface, its boundary-layer solu-
tion is

u1�
i


�m
�1�e�(1�i)y /���

dp1

dx
. �12�

Later, we will need the spatial average of Eq. �12� over the
cross section A of the channel:

�u1��
i


�m
�1� f ��

dp1

dx
, �13�

where � � denotes the spatial average over A and

f ���1�i ���/2rh �14�

is the spatial average of the exponential. Combining Eqs.
�12� and �13� gives another useful expression for the veloc-
ity,

u1�
�u1�

1� f �
�1�e�(1�i)y /��� . �15�

To find the dependence of the oscillating temperature T
on y is complicated in a gas mixture, because thermal diffu-
sion couples the oscillations of temperature and concentra-
tion. Following Landau and Lifshitz,17 let the concentration c
be the local mass fraction of the lighter component; i.e., c is
the ratio of the mass of the component with the lower mo-
lecular weight to the total mass of gas, per unit volume. Then
the convective mass flux density of this component is �cv,
and the diffusive mass flux density of this component is

i���D�“c��kT� /T �“T� , �16�

with barodiffusion neglected. The diffusion coefficient D
gives diffusion in response to a concentration gradient, and
the thermal diffusion ratio kT� gives the diffusion in response
to a temperature gradient. Using Eq. �16� with Eq. �57.3� of
Landau and Lifshitz,

���c/�t�v–“c ���“–i, �17�

to eliminate i yields

��c/�t�v–“c ��“–�D“c��DkT� /T �“T� . �18�

This equation shows that the concentration at a point changes
in time due to convection of a concentration gradient past
that point plus diffusion caused by both a concentration gra-
dient and a temperature gradient. Using Eqs. �6�–�10� for all
variables, keeping terms to first order, and realizing that
dcm /dx�0 for a well-mixed gas, Eq. �18� becomes simply

c1�
�D

2

2i � �2c1

�y2
�

kT�

Tm

�2T1

�y2 � . �19�

To examine oscillating heat transfer in the mixture, we
begin by combining Eqs. �57.6� and �58.12� of Landau and
Lifshitz, eliminating q�gi, substituting Eqs. �6�–�10�, and
keeping terms to first order:

�mTm� i
s1�u1

dsm

dx �
�k

�2T1

�y2
�� kT�� �g

�c �
p ,T

�Tm� �g

�T �
p ,c

�“–i1 , �20�

where q is the heat flux density and g is the chemical poten-
tial per unit mass. Equation �17� shows that “–i1
��i
�mc1 . We have dsm /dx�0 in the present simple
problem, although this will not be the case when dTm /dx
�0 in the stacks of thermoacoustic engines and refrigerators,
nor when dcm /dx�0 in apparatus with substantial net mix-
ture separation. We eliminate s1 using

ds�� �s

�T �
p ,c

dT�� �s

�c �
p ,T

dc�� �s

�p �
T ,c

dp �21�

�
cp

T
dT�� �g

�T �
p ,c

dc�
1

�T
dp , �22�

where we have used two Maxwell relations and the ideal-gas
equation of state. With these substitutions, Eq. �20� becomes
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T1�
p1

�mcp
�

�Tmc1

kT�
�

��
2

2i

�2T1

�y2
, �23�

using the definition

��
�kT� �2

Tmcp
� �g

�c �
p ,T

�24�

for future simplicity.
Equations �19� and �23� comprise two coupled differen-

tial equations in the unknown functions c1(y) and T1(y). In
general, the solid has sufficient heat capacity and thermal
conductivity to enforce

T1�0 ��0 �25�

on the gas at the solid surface, so this provides one boundary
condition for the solution. The other boundary condition is
obtained from the fact that, absent condensation and evapo-
ration at the solid, the first-order concentration flux density
perpendicular to the wall must be zero, which yields

�c1

�y �
0

�
kT�

Tm

�T1

�y �
0

�0. �26�

Equations �19� and �23� are very similar to Eqs. �58.14�
and �58.15� of Landau and Lifshitz, and are simplified ver-
sions of Eqs. �5� and �3� of Raspet et al.6 if we also use our
results for � and kT� �see next section�. However, the present
problem differs significantly from that of Raspet et al. in two
ways. First, our boundary condition Eq. �26� allows no flux
of either component into the wall, while their ‘‘wet’’ bound-
ary condition allows flux of their condensing component into
the wall by ensuring that the partial pressure of the condens-
ing component is constant at the wall. Second, we keep the
kT� term in Eq. �19� while they neglect it in their Eq. �28�.

To solve Eqs. �19� and �23�, subject to the boundary
conditions given by Eqs. �25� and �26�, we can use Eq. �23�
to eliminate c1 from the other equations, obtaining a fourth-
order differential equation for T1 with two boundary condi-
tions:

T1�
p1

�mcp
�

1

2i
���

2��1����D
2 �

�2T1

�y2
�

��
2�D

2

4

�4T1

�y4
, �27�

T1�0 ��0, �28�

�1���
�T1

�y �
0

�
��

2

2i

�3T1

�y3 �
0

�0. �29�

An additional boundary condition is simply that T1 must
remain finite as y→� . The solution is

T1�
p1

�mcp
�1�Ce�(1�i)y /��D��1�C �e�(1�i)y /�D�� , �30�

where

��D
2 � 1

2��
2�1��1���/L���1��1���/L�2�4/L � , �31�

�D�
2 � 1

2��
2�1��1���/L���1��1���/L�2�4/L � , �32�

C�
�L ��D��D�

�1��L ����D��D��
, �33�

which can be verified with modest difficulty by direct sub-
stitution into Eqs. �27�–�29�. �The identities

��D
2

��
2

�
�D�

2

��
2

�1�
1��

L
, �34�

L��D
2 �D�

2 ���
4 , �35�

obtained by manipulating Eqs. �31� and �32�, and the algebra
identity

��D
3 ��D�

3 ����D��D�����D
2 ��D�

2 ���D�D��, �36�

are useful when working through some of the tedious steps
in the derivations in this paper.� Note that �→0 recovers the
usual thermoacoustic solution: When L�1, ��D→�� , �D�

→�D , and C→1; or when L�1, ��D→�D , �D�→�� , and
C→0. The spatial average of the temperature over the cross-
sectional area of the channel is

�T1��
p1

�mcp
�1�C f �D��1�C � f D�� , �37�

where

f �D��1�i ���D/2rh �38�

and similarly for f D� .

III. TYPICAL VALUES

To present some typical numerical values, we consider
He–Ar and He–Xe mixtures, which are of interest in ther-
moacoustic refrigerators.11,12 Although the derivation else-
where in this paper follows Landau and Lifshitz’s notational
preference for mass fraction c, most data are tabulated in
terms of mole fraction n; the two are related by

c�
nLmL

nLmL��1�nL�mH
, �39�

where m is molar mass and the subscripts refer to the lighter
and heavier species. We use viscosity and thermal conduc-
tivity calculations from Giacobbe18 at 20 °C, and mass diffu-
sion coefficients interpolated to 20 °C from the measure-
ments of Srivastava19, which are in good agreement with
calculations. We also include the weak concentration depen-
dence of D according to the recommendations of Chapman
and Cowling.20 Based on these data, � and L are shown in
Fig. 2�a�.

Next we need � , which requires evaluation of
(�g/�c)p ,T . Landau and Lifshitz suggest how to proceed.
The chemical potential g �per unit mass� is

g� ĝL /mL� ĝH /mH , �40�

where the caret indicates a molar chemical potential. For
ideal gases, we have

ĝL� ĝL ,pure�RT ln nL , �41�

ĝH� ĝH ,pure�RT ln�1�nL�, �42�
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with R the universal gas constant. Using Eqs. �39�–�42�, it is
straightforward to compute

� �g

�c �
p ,T

�� �g

�nL
�

p ,T
� � �c

�nL
�

p ,T

�
RT

c�1�c ��mL�c�mH�mL��
. �43�

We must also convert from Landau and Lifshitz’s thermal
diffusion ratio kT� to the thermal diffusion ratio kT used in
most other treatments. These differ by a factor of dc/dnL , so
that

kT��kT

mLmH

�nLmL��1�nL�mH�2

�kT

�mL��mH�mL�c�2

mLmH
. �44�

Combining Eqs. �24�, �43�, and �44� we have finally

��
��1

�

kT
2

nL�1�nL�
, �45�

where � is the ratio of isobaric to isochoric specific heats.
For kT , we use the experimental data of Atkins et al.,21

ranging over helium mole fractions 0.1�nL�0.5. To inter-
polate and extrapolate elsewhere, we fit their data with kT

�0.38 nL
1.2 (1�nL)0.8 for He–Ar and kT�0.40 nL

1.3 (1
�nL)0.7 for He–Xe, which give better fits to the data than

the functional form nL(1�nL) suggested by the simplest ki-
netic theory. Figure 2�b� shows the resulting values of ��D

and �D� . Clearly Fig. 1 was unrealistically naive. Heat and
mass diffusion are so intimately linked that the length scales
��D and �D� appearing in T1(y) are very different from the
familiar �� . Hence, it is also clear that correct calculations
of enthalpy flux, proportional to Re�T1ũ1� , must include
thermal diffusion. �The tilde denotes complex conjugation.�

We can use Eqs. �23� and �30� to obtain c1(y), which is
plotted in Fig. 3 for a 50–50 He–Xe mixture. The imaginary
part is negative for y��� and is positive for ���y�4�� ,
which is qualitatively consistent with the phenomena we de-
scribed in Fig. 1, where the thermal diffusion occurs during
pressure extrema of Fig. 1�a� and �c� so that the mixture is
most separated in Fig. 1�b� and �d�. However, the large
Re�c1� in Fig. 3 shows again that this oscillating thermal
diffusion is much richer than we had anticipated in Fig. 1.

IV. BOUNDARY-LAYER MASS SEPARATION

The phased oscillating phenomena described above
cause a time-averaged mass separation, whose origin is easy
to understand qualitatively. The oscillating temperature gra-
dient �T1 /�y near the wall causes nonzero concentration os-
cillations near the wall. At this distance from the wall, com-
parable to �� , the oscillating velocity u1 in the x direction
depends on y. If the time phasing is favorable, this produces
a time-averaged mass flux density �cū of the lighter compo-
nent and �(1�c) ū of the heavier component in the x direc-
tion, while the total mass flux density � ū remains zero. �The
overbar signifies time average.� Exaggerating the magnitudes
of the effects, we could imagine that during one half of the
cycle the light component would be stuck deep in the viscous
boundary layer and the heavy component would be free to
move outside the viscous boundary layer; during the other
half of the cycle the roles would be reversed, with the heavy
component immobilized by viscosity and the lighter compo-
nent free to move. If the velocity were phased correctly with
respect to this oscillating concentration, the time-averaged
result would be flux of the light component in one direction
along x and flux of the heavy component in the opposite
direction.

FIG. 2. Some relevant properties of He–Ar and He–Xe mixtures. �a� Values
of � and L, giving the ratios ��

2/��
2 and ��

2 /�D
2 , respectively. �b� The ratios

��D /�� and �D� /�� , which appear throughout our calculations. Each of
these approaches 1 and 1/�L in the two pure-gas limits.

FIG. 3. Real and imaginary parts of c1 , normalized by p1 /pm , for a He–Xe
mixture with nL�0.50. For this mixture, �
 /���0.445, ��D /���1.16, and
�D� /���0.97.
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The time-averaged second-order mass flux of the lighter
component is

A��cū�2�
A�m

2
Re��c1ũ1 �]. �46�

To evaluate the right-hand side, we use Eq. �23� for c1(y),
Eq. �30� for T1(y), and Eq. �15� for u1(y). The spatial av-
erage �c1ũ1� involves boundary-layer-approximation inte-
grals of the form

1

rh
�

0

rh
e�(1�i)y /� �1�e�(1�i)y /��� dy�

�������i������

2rh�1���
2/�2�

,

�47�

where � is either ��D or �D� . After tedious algebra leading
to an intermediate result,

��cū�2�
��

4rh

kT� /�

cpTm
Re� p1�ũ1�

�1� f̃ ��
� C� 1�

��D
2

��
2 �

�
���D /�������i���D /������

��D
2 /��

2��
��1�C �

�� 1�
�D�

2

��
2 � ��D� /�������i��D� /������

�D�
2 /��

2��
	 � ,

�48�

the final result is

A��cū�2�
��

4rh

kT�

cpTm
�F trav Re�p1Ũ1]�Fstand Im�p1Ũ1])

�49�

to lowest order in �/rh , where U1�A�u1� is the volume
flow rate. The traveling-wave and standing-wave factors are
given by

F trav �
���L������L���D /����D� /���

�1��L ��1���1�L����L ��
, �50�

Fstand �
����L������L���D /����D� /���

�1��L ��1���1�L����L ��
.

�51�

Equation �49� can be rewritten in terms of molar quantities:

ṄL ,2�
��

4rh

��1

�

kT

RTm
�F trav Re�p1Ũ1]�Fstand Im�p1Ũ1]),

�52�

where ṄL ,2 is the rate at which moles of the light component
move in the x direction. �Note kT� in Eq. �49�; kT in Eq. �52�.�

Figure 4 shows kTF for He–Ar and He–Xe mixtures.
The factors in Eq. �52� can be grouped into dimensionless
ratios, showing that the average molar separation flux density
in the channel scales like the product of p1 /pm , �u1�/a , a,
�� /rh , (��1)/4� , and the molar density N/V . The details,
captured in kTF trav and kTFstand , reduce the magnitude of the
effect by roughly 10�2, as shown in Fig. 4. Hence, with (�
�1)/4��10�1, the molar separation flux in a short porous
medium having rh��� could be of order 10�3M 2(N/V)aA

�where M�
p1
/pm�
�u1�
/a is the acoustic Mach num-
ber�. If such a short porous medium filled the cross section of
a chamber whose length was of the order of the acoustic
wavelength, and if nonzero dcm /dx did little to change this
mass separation rate, then a substantial concentration differ-
ence could establish itself in a time of order 1/10�3M 2 f ,
where f is the frequency of the wave. Hence, it seems likely
that thermoacoustic refrigerators using gas mixtures might
have concentration differences across their stacks, if bulk gas
motion such as convection or streaming does not re-mix the
gases with sufficient vigor.

Figure 4 also shows that traveling-wave phasing should
be more effective than standing-wave phasing at separating
the mixture, reconfirming that our initial view of this pro-
cess, illustrated in Fig. 1, was much too naive.

V. BOUNDARY-LAYER ACOUSTIC POWER
DISSIPATION

To find the time-averaged acoustic power dĖ2 dissi-
pated in a length dx of the channel, we write

dĖ

dx
��A

d�pū�
dx

. �53�

Expressing Eq. �53� in complex notation and expanding the
derivative gives

dĖ2

dx
��

1

2
A Re� �ũ1�

dp1

dx
� p̃1

d�u1�
dx � . �54�

We can obtain dp1 /dx from Eq. �13� above. To find
d�u1�/dx , we use the continuity equation ��/�t�“•(�v)
�0, which can be averaged with respect to y in our acoustic
approximation to obtain

i
��1���m d�u1�/dx�0. �55�

Using d���(�/T) dT�(�/a2) dp , we can express the spa-
tially averaged density as ��1���(�m /Tm)�T1�
�(�/a2)p1. Substituting this into Eq. �55�, using Eq. �37�
for �T1�, and eliminating cp by means of the thermodynamic
identity ��1�a2/Tcp yields

FIG. 4. Dimensionless molar-separation-flux parameters kTF trav and kTFstand

for He–Ar and He–Xe mixtures.
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i
�1����1 ��C f �D��1�C � f D��� p1

��ma2 d�u1�/dx�0 �56�

as an acoustic expression of the continuity equation which
can be solved for d�u1�/dx .

Finally, substituting Eqs. �56� and �13� into Eq. �54�, we
obtain

dĖ2

dx
�

A


2 ��m
�u1�
2


1� f �
2
Im�� f ��

�
���1 �
p1
2

�ma2
Im��C f �D��1�C � f D��� . �57�

The first term gives the viscous damping of sound and the
second term gives the complicated thermal damping in the
presence of thermal diffusion. Using the definition15 of hy-
draulic radius, Eq. �57� reduces to

dĖ2

dS
�

1

4
�m
�u1�
2
��

�
1

4


p1
2

�ma2
���1 �


���D��D��

1�1/�L
, �58�

to lowest order in the �’s, where S is the surface area of the
channel. The first term is the familiar8 boundary-layer vis-
cous dissipation per unit surface area; it is unchanged by
thermal diffusion. The second term represents the combined
dissipative effects of heat and mass diffusion. The limit �
→0 recovers the usual8 thermoacoustic solution, with the
final fraction in the second term of Eq. �58� reducing simply
to �� . �The similar-looking result in Ref. 2 does not recover
the usual thermoacoustic solution when kT→0.)

Figure 5 displays this final fraction in the second term of
Eq. �58� for He–Ar and He–Xe mixtures, divided by �� , so
this figure shows the ratio of the present p2 dissipation term
to the pure-gas p2 term involving only �� . The extra dissi-
pation is less than one percent for these mixtures, so it is
unlikely that this effect would have been noticed in measure-
ments to date with thermoacoustic refrigerators. However,
such refrigerators operate with a nonzero dTm /dx , and pre-
sumably also with a nonzero dcm /dx; these effects might
increase the mass-diffusion dissipation.
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Our arbitrary decision to let c represent the mass fraction
of the lighter component was very unfortunate, because it
caused kT� to be negative for typical gas mixtures such as
He–Ar, in contradiction to the sign convention for kT used in
most publications and in our own numerical examples.
Hence, for consistency within this paper and with most pub-

lications: In the third paragraph of Sec. II and the first two
paragraphs of Sec. IV, the words ‘‘lighter’’ and ‘‘heavier’’
should be interchanged, and ‘‘lower’’ should be ‘‘higher.’’
Subscripts H and L should be interchanged in and near Eqs.
�39�, �40�, �43�, �44�, and �52�. �Equations �41�, �42�, and
�45� are unchanged because nH�1�nL .�
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In the first paragraph of Sec. IV, the statement ‘‘...while
the total mass flux density �u remains zero’’ is wrong. In the
situation we are considering, with sealed reservoirs at the
ends of the channel, the total time-averaged mole flux is
zero, as the mole flux of the heavy component in one direc-
tion equals that of the light component in the other direction.
Hence, nonzero net mass must flow in the direction that the
heavy component flows.

It is easy to show that this net time-averaged second-
order mass flux is

Ṁ 2�ṀH ,2�1�mL /mH� �46a�

when the mole fluxes are equal and opposite, and that the

time-averaged second-order mass flux of the heavy compo-
nent is

ṀH ,2�A��cu�2�
A�m

2
Re��c1u 1̃ ���cmṀ 2 . �46b�

These equations should replace Eq. �46� in the manu-
script. Equations �48� and �49� give expressions for
�m Re��c1u1̃ ��/2, not for ��cu�2 .

Finally, by combining Eqs. �46a� and �46b� to eliminate
Ṁ 2 and solving for ṀH ,2�mHṄH ,2 , we arrive at Eq. �52�,
which is correct as written.

We are grateful to Drew Geller for bringing this error to
our attention.
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